

Instructions to candidates

- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [110 marks].

worked solutions: 17 pages

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A (56 marks)

Answer **all** questions in the boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 5]

Given that $px^3 + qx^2 - 9x + 18$ is exactly divisible by (x+2)(x-3), find the value of *p* and the value of *q*.

remainder theorem $\chi = -2$: $p(-2)^{3} + q(-2)^{2} - q(-2) + (8 = 0)$ $-8p + 4q + 36 = 0 \implies -2p + 2 = -9$ $\chi = 3: \rho(3)^3 + q(3)^2 - q(3) + 18 = 0$ $27p + 9q - 9 = 0 \implies 3p + q = 1$ 2p + q = -9 3p + q = 1Subtracting gives $-5p = -10 \Rightarrow p = 2$ $3(2) + q = 1 \Rightarrow q = -5$

[4]

2. [Maximum mark: 6]

The diagram below shows a curve with equation $y = 2 + k \cos x$, defined for $-\frac{\pi}{2} \le x \le \frac{5\pi}{2}$.

The point *S* lies on the curve and has coordinates $\left(-\frac{\pi}{3}, \frac{7}{2}\right)$. The point *T* with coordinates (a, b) is the minimum point.

(a) Show that
$$k = 3$$
. [2]

(b) Hence, find the value of *a* and the value of *b*.

(a) substitute in
$$\left(-\frac{\pi}{3}, \frac{\pi}{2}\right)$$

 $\frac{\pi}{2} = 2 + k \cos\left(-\frac{\pi}{3}\right)$
 $\frac{\pi}{2} = 2 + k \left(\frac{1}{2}\right)$
 $\frac{1}{2} k = \frac{3}{2} \implies k = 3$ Q.E.D.
(b) $y = 2 + 3\cos x \implies \frac{dy}{dx} = -3\sin x = 0$
 $\sin x = 0$ find first solution such that $x > 0$
 $x = \pi \implies a = \pi$
substituting: $b = 2 + 3\cos(\pi) = 2 + 3(-1) = -1$
 $+hus, \quad a = \pi, \quad b = -1$

A geometric series has a positive common ratio r. The series has a sum to infinity of 9 and the sum of the first two terms is 5. Find the first three terms of the series.

 $S_{00} = \frac{u_1}{1-r} = 9 \implies u_1 = 9-9r$ $u_i + u_i r = 5$ substituting gives 9-9r + (9-9r)r = 5 $9 - 9r + 9r - 9r^2 = 5$ 912=4 r² = 4 $r = \frac{2}{3} (r > 0)$ $u_1 = 9 - 9(\frac{2}{3}) = 9 - 6 = 3$, $U_2 = 3(\frac{2}{3}) = 2$ $U_3 = 2\left(\frac{2}{3}\right) = \frac{4}{3}$ first three terms of the series: 3, 2, 43

The probability density function for a random variable X is given by

$$f(x) = \begin{cases} cxe^{-x}, & 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases} \text{ where } c \text{ is a real number.}$$

Find the value of *c*.

$$\sum P(X=x) = 1 \quad \Rightarrow \int_{0}^{1} f(x) \, dx = 1$$

$$c \int_{0}^{1} x e^{-x} \, dx = 1 \qquad find \quad \int x e^{-x} \, dx$$
integration by parts
$$u = x \Rightarrow du = dx$$

$$dv = e^{-x} \, dx \Rightarrow v = -e^{-x}$$

$$tke_{n} \quad \int x e^{-x} \, dx = -x e^{-x} + \int e^{-x} \, dx$$

$$= -x e^{-x} - e^{-x}$$

$$c \int_{0}^{1} x e^{-x} \, dx = c \left[-x e^{-x} - e^{-x} \right]_{0}^{1} = c \left[\left(-e^{-1} - e^{-1} \right) - \left(0 - 1 \right) \right] = 1$$

$$c \left(-\frac{2}{e} + 1 \right) = 1$$

$$c \left(-\frac{2}{e} - 1 \right)$$

$$c = \frac{e}{e-2}$$

Consider the equation $ax^2 + 7x - 2a = 0$ that has two distinct solutions for *x*.

(a) Given that x = -3 is a solution of $ax^2 + 7x - 2a = 0$, find the value of *a* and the other solution for *x*. [4]

(b) Hence, express
$$\frac{5x-7}{ax^2+7x-2a}$$
 as the sum of two fractions. [3]

(a)
$$x = -3$$
 is a root, therefore $(x-3)$ is a factor of the quadratic.
Hence, $ax^2 + 7x - 2a = (x+3)(?) = 0$. The missing factor must be linear, so
 $ax^2 + 7x - 2a = 0 = (x+3)(ax+b) \Rightarrow -2a = 3b \Rightarrow b = -\frac{2}{3}a$
Then,
 $ax^2 + 7x - 2a = (x+3)(ax-\frac{2}{3}a) \Rightarrow ax^2 + 7x - 2a = ax^2 + (3a - \frac{2}{3}a)x - 2a$
Thus,
 $3a -\frac{2}{3}a = 7 \Rightarrow \frac{7}{3}a = 7 \Rightarrow a = 3$
Substituting into the quadratic and factorizing:
 $3x^2 + 7x - 6 = (x+3)(3x-2) = 0$
Thus, the other solution to the quadratic equation is $x = \frac{2}{3}$
(b) $\frac{5x-7}{ax^2 + 7x - 2a} = \frac{5x-7}{3x^2 + 7x - 6} = \frac{5x-7}{(x+3)(3x-2)} = \frac{A}{x+3} + \frac{B}{3x-2}$
Multiply through by $(x+3)(3x-2)$:
 $5x-7 = A(3x-2) + B(x+3)$
Let $x = -3$:
 $5(-3) - 7 = A(3(-3)-2) + B(-3+3) \Rightarrow -22 = -11A \Rightarrow A = 2$
Let $x = 0$:
 $5(0) - 7 = 2(3(0)-2) + B(0+3) \Rightarrow -7 = -4 + 3B \Rightarrow 3B = -3 \Rightarrow B = -1$
Hence, $\frac{5x-7}{ax^2 + 7x - 2a} = \frac{5x-7}{3x^2 + 7x - 6} = \frac{2}{x+3} - \frac{1}{3x-2}$

A curve has equation $4xy - y^2 - x^3 = 0$ for x > 0, y > 0. The graph of the curve has a vertical tangent at point R. Find the coordinates of R.

implicit differentiation

$$4y + 4x \frac{dy}{dx} - 2y \frac{dy}{dx} - 3x^{2} = 0$$

$$\frac{dy}{dx} (4x - 2y) = 3x^{2} - 4y$$

$$\frac{dy}{dx} = \frac{3x^{2} - 4y}{4x - 2y} \qquad \text{vertical tangent occurs where}$$

$$\frac{dy}{dx} = \frac{3x^{2} - 4y}{4x - 2y} \qquad \frac{dy}{dx} \text{ is undefined}$$

$$\frac{denominator}{dx} = \frac{dy}{dx} = 0 : 4x - 2y = 0 \implies y = 2x$$

$$\text{substitute into equation for curve}$$

$$4x (2x) - (2x)^{2} - x^{3} = 0$$

$$x^{3} = 4x^{2} \qquad \text{since } x \neq 0, \text{ can divide by } x^{2}$$

$$x = 4$$

$$y = 2(4) = 8$$

$$\text{coordinates of } R: (4, 8)$$

Prove by mathematical induction that $2^n > 2n+1$ for all $n \ge 3, n \in \mathbb{Z}$.

show true for
$$n=3$$

 $2^{3} > 2(3) + 1 \Rightarrow 8 > 7$ thus, true for $n=3$
assume statement to be true for a specific
value of n , call it K
thus, $2^{K} > 2K+1$
show that it must follow that statement
is true for $n = K+1$
hence, show that $2^{K+1} > 2(K+1)+1 = 2K+3$
 $2^{K} \cdot 2^{1} > 2K+3$
 $2^{K} \cdot 2^{1} > 2K+3$
 $2^{K} \cdot 2^{1} > 2K+3$
since $2^{K} > 2K+1$ (assumption) then $2^{K} \cdot 2 > (2K+1) \cdot 2$
show $2(2K+1) > 2K+3$
 $2K+2K+2 > 2K+3$
for all $K \in \mathbb{Z}^{+}$, it's true that $2K+2 > 3$
thus, must be true that $2K+2 > 3$
thus, must be true that $2K+2K+2 > 2K+3$
and since $2^{K} \cdot 2 > 2K+2K+2 = 2(2K+1)$
then must be true that $2^{K+1} > 2K+3$
So, result is true for $n=K+1$ when $n=K$. Since result is
true for $n=3$, then by principle of mathematical induction
the statement is true for all $n \ge 3$, $n \in \mathbb{Z}$.

Solve for *x* in each of the following equations:

(a)
$$\log_2(5x^2 - x - 2) = 2 + 2\log_2 x$$
. [3]

(b)
$$3^{x+1} = 2^{2-x}$$
. Express the answer in the form $\frac{\ln a}{\ln b}$, $a, b \in \mathbb{Q}$. [4]

The coefficients of x^2 in the expansions $(1+x)^{2n}$ and $(1+15x^2)^n$ are equal. Given that *n* is a positive integer, find the value of *n*.

$$\frac{(a+b)^{n}}{(a+b)^{n}} = \sum_{r=0}^{n} \binom{n}{r} a^{-r} b^{r}$$
explessions for χ^{2} terms in each expansion
$$\frac{(1+\chi)^{2n}}{(1+\chi)^{2n}} = \chi^{2} term \frac{\binom{2n}{2}}{\binom{2}{2}} \binom{1}{\binom{2^{n-2}}{\binom{2}{2}}} = \binom{2n}{\binom{2}{2}} \chi^{2}$$

$$\frac{(1+15\chi^{2})^{n}}{(1+15\chi^{2})^{n}} = \chi^{2} term \binom{n}{\binom{1}{2}} \binom{n-1}{(15\chi^{2})^{1}} = \binom{n}{\binom{1}{15\chi^{2}}} \chi^{2}$$
equating the coefficients
$$\binom{2n}{2} = 15\binom{n}{\binom{1}{2}}$$

$$\frac{(2n)!}{2((2n-2)!)} = 15n$$

$$\frac{2n(2n-1)}{(2n-2)!} = 30n$$

$$\frac{n=8}{(2n-1)^{2}} = 32n$$

Do **not** write solutions on this page.

Section B (51 marks)

Answer **all** the questions on the answer sheets provided. Please start each question on a new page.

10. [Maximum mark: 24]

The diagram shows the graph of the function defined by $f(x) = x\sqrt{1-x^2}, -1 \le x \le 1$.

The function has a minimum at the point P and a maximum at point Q.

(a) Show that
$$f'(x) = \frac{1-2x^2}{\sqrt{1-x^2}}$$
. [4]

- (b) Find the coordinates of P, and the coordinates of Q. [4]
- (c) Find the total area enclosed by the graph of f and the x-axis. [5]
- (d) The graph of *f* is rotated 2π radians about the *x*-axis, forming a solid. Show that the total volume of this solid is $\frac{4\pi}{15}$. [5]

The function g is defined as g(x) = 2f(x-3).

- (e) Determine the domain and the range of g. [4]
- (f) Another solid is formed when the graph of g is rotated 2π radians about the *x*-axis. Write down the total volume of this solid. [2]

[3]

[3]

[4]

Do not write solutions on this page.

11. [Maximum mark: 17]

Consider the points A(8, -4, 5), B(5, -3, 4) and C(3, -2, 5).

(a) Find the vector
$$\vec{AC} \times \vec{AB}$$
. [4]

- (b) Determine the area of triangle ABC.
- (c) Plane Π_1 contains triangle ABC. Show that a Cartesian equation for Π_1 is 2x+5y-z=-9

A second plane Π_2 is defined by the Cartesian equation Π_2 : x+by+cz=-6, where b and c are constants. Plane Π_2 is perpendicular to plane Π_1 and the two planes intersect at a line with the Cartesian equation $\frac{x+1}{-16} = \frac{y+1}{5} = \frac{z-2}{-7}$.

(d) Find the value of *b*, and the value of *c*.

A third plane, Π_3 , is defined by the Cartesian equation Π_3 : x + 2y - 2z = 9.

(e) Given that Π_1 , Π_2 and Π_3 intersect at point P, find the coordinates of P. [3]

12. [Maximum mark: 13]

Consider the complex number $w = \cos \theta + i \sin \theta$.

(a) Show that
$$w^n + \frac{1}{w^n} = 2\cos n\theta$$
 where $n \in \mathbb{Z}^+$. [3]

(b) Hence, write down an expression, in terms of
$$\cos\theta$$
, for $\left(w + \frac{1}{w}\right)^5$. [1]

(c) Show that
$$\cos^5 \theta = \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta).$$
 [4]

(d) Hence, find all the solutions of $\cos 5\theta + 5\cos 3\theta + 12\cos \theta = 0$ in the interval $0 \le \theta < 2\pi$. [5]

10.

(a)
$$f(x) = x (1-x^2)^{\frac{1}{2}}$$

 $f'(x) = (1-x^2)^{\frac{1}{2}} + x \left[\frac{1}{2}(1-x^2)^{\frac{1}{2}}(-2x)\right]$
 $= (1-x^2)^{\frac{1}{2}} - x^2(1-x^2)^{-\frac{1}{2}}$
 $= (1-x^2)^{-\frac{1}{2}} \left[(1-x^2)^{\frac{1}{2}} - x^2\right]$
 $= (1-x^2)^{-\frac{1}{2}} \left[(1-2x^2)\right]$
 $f'(x) = \frac{1-2x^2}{\sqrt{1-x^2}}$ Q.E.P.

(b)
$$f'(x) = \frac{1-2x^2}{\sqrt{1-x^2}} = 0 \implies 1-2x^2 = 0 \implies x^2 = \frac{1}{2} \implies x = \pm \sqrt{2}$$

 $f(\frac{\sqrt{2}}{2}) = \frac{\sqrt{2}}{2}\sqrt{1-(\frac{\sqrt{2}}{2})^2}} = \frac{\sqrt{2}}{2}\sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{2}}{2}} = \frac{1}{2}$
 $f(-\sqrt{2}) = -\frac{\sqrt{2}}{2}\sqrt{1-(-\sqrt{2})^2}} = -\frac{\sqrt{2}}{2}\cdot\sqrt{2}} = -\frac{1}{2}$
 $thus, \ P(\frac{\sqrt{2}}{2}, \frac{1}{2}) \text{ and } Q(-\sqrt{2}, -\frac{1}{2})$

(c) to find total enclosed area, find area of region from x=0 to X=1 and double it - because of symmetry of graph

area =
$$2\int_{0}^{1} x\sqrt{1-x^{2}} dx$$

= $2\left[-\frac{1}{3}\int_{(1-x^{2})^{2}}^{1}\right]_{0}^{1}$
= $-\frac{2}{3}\left[0-1\right] = \frac{2}{3}$
 $= -\frac{1}{2}\left(\frac{2}{3}u^{\frac{3}{2}}\right) = -\frac{1}{3}u^{\frac{3}{2}} = -\frac{1}{3}\sqrt{(1-x^{2})^{3}}$

[Q10 worked solution continued on next page]

© InThinking – IB Maths: Analysis & Approaches

10. [continued]

(d) double the volume found from rotating the region from x=0 to x=1
volume =
$$2\pi \int_{0}^{1} (x\sqrt{1-x^{2}})^{2} dx$$

= $2\pi \int_{0}^{1} x^{2} (1-x^{2}) dx = 2\pi \int_{0}^{1} (x^{2} - x^{4}) dx$
= $2\pi \left[\frac{1}{3}x^{3} - \frac{1}{5}x^{5} \right]_{0}^{1} = 2\pi \left[(\frac{1}{3} - \frac{1}{5}) - 0 \right]$
= $2\pi \left(\frac{5}{15} - \frac{3}{15} \right) = 2\pi \left(\frac{2}{15} \right) = \frac{4\pi}{15}$ Q.E.P.
(e) graph of g can be found by translating graph of f
3 units to the right and stretching it vertically by
a factor of 2
domain of g: $2 \le x \le 4$
 f
(f) volume = $2\pi \int_{3}^{4} (2x\sqrt{1-x^{2}})^{2} dx = 2\pi \int_{3}^{4} 4 (x\sqrt{1-x^{2}})^{2} dx$
thus, volume = $4 \left(\frac{4\pi}{15} \right) = \frac{16\pi}{15}$

11. (a)
$$\overrightarrow{AC} = \begin{pmatrix} 2-8\\ -2+4\\ -2+4 \end{pmatrix} = \begin{pmatrix} -5\\ 2 \end{pmatrix}$$
 $\overrightarrow{AB} = \begin{pmatrix} -5\\ -3+4 \\ -1 \end{pmatrix} = \begin{pmatrix} -3\\ -1 \end{pmatrix}$
 $\overrightarrow{AC} \times \overrightarrow{AB} = \begin{vmatrix} \frac{1}{5} & \frac{7}{2} & 0\\ -3 & 1-1 \end{vmatrix} = \frac{1}{5} \begin{vmatrix} 2 & 0\\ 1 & -1 \end{vmatrix} = \frac{1}{5} \begin{vmatrix} -5 & 0\\ 1 & -1 \end{vmatrix} + \overrightarrow{K} \begin{vmatrix} -5 & 2\\ -3 & 1 \end{vmatrix} = -2\overrightarrow{i} - 5\overrightarrow{j} + \overrightarrow{K}$
(b) area $\triangle ABC = \frac{1}{2} \begin{vmatrix} \overrightarrow{AC} \times \overrightarrow{AB} \end{vmatrix} = \frac{1}{2} \sqrt{(-2)^2 + (-5)^2 + 1^2} = \frac{1}{2} \sqrt{30}$
(c) $\overrightarrow{AC} \times \overrightarrow{AB}$ is a normal vector for plane $\overrightarrow{T_1}$ containing $\triangle ABC$
 $+hus_1$ for plane $\overrightarrow{T_1}$ if $2 \times +5y - 2 = d$
substitute in a point *j* such as $C(3, -2, 5)$
 $2(3) + 5(-2) - 5 = 6 - 10 - 5 = -9$
therefore, Cartesian equation for $\overrightarrow{T_1}$ is $2x + 5y - \overline{2} = -9$
 (d) since planes $\overrightarrow{T_1}$ and $\overrightarrow{T_2}$ are perpendicular, then
their normal vectors will be perpendicular to the
direction vector of the line of intersection of $\overrightarrow{T_1}$ and $\overrightarrow{T_2}$
 $\overrightarrow{T_1} = \begin{pmatrix} 2\\ -5\\ -1 \end{pmatrix}$ and $\overrightarrow{T_2} = \begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}$, $\begin{pmatrix} 1\\ 6\\ -7 \end{pmatrix}$
 $(\frac{1}{2}) \cdot \begin{pmatrix} -56\\ -7 \end{pmatrix} = 0 \rightarrow -16 + 5b - 7c = 0$
 $\{0 + 5b - 7c = 16 - 16 - 5 - 7 = -9$
direction vector for line $\frac{x+1}{-16} = \frac{y+1}{5} = \frac{2-2}{-7}$ is $\begin{pmatrix} -16\\ -7\\ -7 \end{pmatrix}$
 $(\frac{1}{2}) \cdot \begin{pmatrix} -56\\ -7\\ -7 \end{pmatrix} = 0 \rightarrow -16 + 5b - 7c = 0$
 $\{0 + 5b - 7c = 16 - 5b - 7c = 0$
 $\{0 + 5b - 7c = 16 - 5b - 7c = 0$
 $\{0 + 5b - 7c = 16 - 5b - 7c = 0$
 $\{0 + 5b - 7c = 16 - 5b - 7c = 0$

[Q11 worked solution continued on next page]

IB Mathematics: Analysis & Approaches HL

11. [continued]

(e) planes Π_1 and Π_2 intersect at line $\frac{x+1}{-16} = \frac{y+1}{5} = \frac{z-2}{-7}$, so find the point of intersection between this line and the plane Π_3

$$\frac{x+1}{-16} = \frac{y+1}{5} = \frac{z-2}{-7} = \lambda \implies \begin{array}{c} x = -1 - 16\lambda \\ y = -1 + 5\lambda \\ z = 2 - 7\lambda \end{array}$$

Substituting into equation for Π_3 :

$$(-1-16\lambda)+2(-1+5\lambda)-2(2-7\lambda)=9 \implies -7+8\lambda=9 \implies 8\lambda=16 \implies \lambda=2$$

Substituting $\lambda = 2$ into parametric equations of the line:

x = -1 - 16(2)	x = -1 - 32	x = -33
$y = -1 + 5(2) \implies$	$y = -1 + 10 \implies$	y = 9
z = 2 - 7(2)	z = 2 - 14	z = -12

Hence, coordinates of P are (-33, 9, -12)

[Q12 worked solution on next page]

12. (a)
$$W^{n} + \frac{1}{W^{n}} = W^{n} + W^{-n}$$

de Mointe's theorem:
 $W^{n} = \cos n\theta + i \sin n\theta$
 $W^{-n} = \cos (n\theta) + i \sin (-n\theta) = \cos n\theta - i \sin n\theta$
 $\left[\cos(-\theta) = \cos \theta - i \sin n\theta\right]$
thus, $W^{n} + \frac{1}{W^{n}} = (\cos n\theta + i \sin n\theta) + (\cos n\theta - i \sin n\theta)$
 $= 2 \cos n\theta$ $Q.E.P.$
(b) $W + \frac{1}{W} = W^{1} + \frac{1}{W^{1}} = 2 \cos (1:\theta) = 2 \cos \theta$
thus, $\left(W + \frac{1}{W}\right)^{5} = (2 \cos \theta)^{5} = 32 \cos^{5}\theta$
(c) from (b): $\left(W + \frac{1}{W^{-1}}\right)^{5} = 32 \cos^{5}\theta$
expand binomial: $\left(W + \frac{1}{W^{-1}}\right)^{5} = w^{5} + 5w^{3} + 10W + 10W^{-1} + 5w^{-2} + w^{-5}$
 $32 \cos^{5}\theta = (W^{5} + W^{5}) + 5(W^{3} + W^{3}) + 10(W + W^{-1})$
 $= 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$
(d) $\cos 5\theta + 5\cos 3\theta + 12\cos \theta = 0$ [re-arrange to match this]
toos for the second second to a second too.
 $\theta = \frac{\pi}{2}, \frac{2\pi}{2}$

© InThinking – IB Maths: Analysis & Approaches